
University of Virginia cs1120: Introduction to Computing 21 March 2016

Blue Belt Exam

Your name: _________________________ Email ID: _________________________

Congratulations for qualifying to take the Blue Belt exam!

This is a pass/retry exam — if you pass, you advance to the Blue Belt level (and are essentially guaranteed
at least a B- in the class); if you do not pass it, you will have other opportunities to earn the Blue Belt, and
there is no penalty to your grade (so long as you eventually reach the desired level before the end of the
course).

Closed Resources, No Help. For this exam you should work on your own and are not permitted to use
any resources other than your own mind and body, a simple writing implement, and one page of notes
that you created.

Not like other exams. Because of the point-based grading used in most exams, they are usually designed
to have some “easy” questions (to separate the total failures from the have-some-clue failures), mostly
“moderate” questions (so most people can get around 70 points, depending on the grading scheme), a few
harder questions (to allow a small group of students to get up to 90 points), and a few really challenging
questions (to make sure no one gets a perfect score, since that would send a message that they have
nothing left to learn).

The purpose of this exam is to determine if you deserve to be promoted to the Blue Belt level (and if
not, to figure out what you need to learn to be promoted). So, instead of having questions over a range
of difficulty levels on the same content, all the questions are roughly at the same level of difficulty to
cover everything you should be able to do to deserve a Blue Belt promotion. All questions are at the level
I would expect a Blue Belt to be able to answer (but that mostly wouldn’t be answered well by a Green
Belt). Hence, you should not be off-put if the early questions seem more difficult than you expect, but
should realize that it is necessary to pass or nearly pass every (non-bonus) question to demonstrate that
you should be promoted.

Answer well. Answer all 8 questions (and the optional ninth question). You do not necessarily need to
answer every question correctly to pass the test, but do need to demonstrate good understanding of all
of the concepts expected for the Blue Belt.

Your answers need to be clear and convince a reader that you understand well the essentials of the
question. You will not be penalized for minor syntactic or notation problems, or if your code is not
exactly correct, so long as it is close enough to convince us that you understand enough that you would
have been able to eventually figure out the correct code on your own (using an interpreter).



cs1120: Blue Belt Exam 2

Entering the Dojang

Master Kang is having trouble keeping all the belt levels in order, so has written a program to help keep
track of them. The program is almost finished, except for the last line.

def belt_level(bcolor, levels):
"""
Returns a number that is the level corresponding to the input belt color,
given in the input levels. If bcolor is not a belt color, returns -1.
"""
if levels == []:

return -1
else:

if levels[0] == bcolor:
return 0

else:
return ___________________ # Question 1

It should have the behavoir shown below:

BELT_LEVELS = ["none", "white", "yellow", "green", "blue", "purple", "red", "black"]

def test_belts():
assert belt_level("white", BELT_LEVELS) == 1
assert belt_level("blue", BELT_LEVELS) == 4
assert belt_level("black", BELT_LEVELS) == 7
assert belt_level("orange", BELT_LEVELS) == -1

1. Complete the last line of the program above.

2. What is the (worst case) running time of the completed belt_level function? A good answer will state
the asymptotic running time of the belt_level function, and be clear about the meaning of all variables
you use. You may assume all operations are constant time (including list indexing, string equality testing,
range and len).



cs1120: Blue Belt Exam 3

Board Breaking

3. Write Python code to define a function, next_belt(bcolor, levels) that takes as input a belt color
and returns the color of the next level belt. Once someone has reached the highest belt color, there is no
higher belt color, so the result of next_belt should be the input color. (You don’t need to worry about
what your function does if bcolor is not a valid belt color, though.)

For example,

def test_next_belt():
assert next_belt("none", BELT_LEVELS) == "white"
assert next_belt("green", BELT_LEVELS) == "blue"
assert next_belt("red", BELT_LEVELS) == "black"
assert next_belt("black", BELT_LEVELS) == "black"



cs1120: Blue Belt Exam 4

Master Kang also needs a way to keep track of all her students. She keeps a list of students, and represents
each student with a list of three elements: name (a string), age (a number), and belt level (a string that is
a belt color).

For example, here is a class with four students:

students = [["Anirod", 3, "yellow"],
["Naya", 4, "yellow"],
["Mingood", 1, "none"],
["Ana", 29, "red"]]

So, the belt level of the second student in the list (“Naya”) is students[1][2].

4. Define a function promote_student that takes three inputs: a student (a string that is the name of a
student), a list of students (represented as a list of three-element lists as above), and a list of belt levels
(as in the previous two questions). It should modify the value of the list passed as the second input to
promote the student whose name matches the first input to the next level.

For example,

def test_promotion():
students = [["Anirod", 3, "yellow"],

["Ayna", 4, "yellow"],
["Mingood", 1, "none"],
["Ana", 29, "red"]]

promote_student("Anirod", students, BELT_LEVELS)
assert students[0][2] == "orange"
promote_student("Anirod", students, BELT_LEVELS)
assert students[0][2] == "green"
promote_student("Ana", students, BELT_LEVELS)
assert students[3][2] == "black"

Hint: a good definition only needs three lines of code.



cs1120: Blue Belt Exam 5

Sparring

Master Kang also needs a way to match up students in the class for sparring. She defines the func-
tion below, that takes as inputs a list of students (represented as in the previous problem) and a
better_sparring_matchup function. The function passed as better_sparing_match takes as inputs
three students, and returns True if the second input is a better sparring match for the first input than the
third input would be, and False otherwise.

def find_sparring_partners(students, better_sparring_matchup):
partners = []
unmatched = students
while len(unmatched) >= 2:

student = unmatched.pop()
best_match = 0
for partner in range(1, len(unmatched)):

if better_sparring_matchup(student, unmatched[partner],
unmatched[best_match]):

best_match = partner
partners.append([student[0], unmatched[best_match][0]])
unmatched.remove(unmatched[best_match])

return partners

5. Which of these correctly describe the cost of find_sparring_partners? Circle all answers that are
correct, and none of the incorrect answers. You should assume the cost of better_sparing_matchup is
constant, as are the costs of all the operations used including list remove (which is certainly not constant
time in reality) and append. It is not necessary to provide a justification for your answers if you are
confident they are all correct, but if you are worried any of them are incorrect it is a good idea to explain
your reasoning so we know what you are thinking and can potentially pass you on this question even if
some of the answers are wrong.

a. The running time is linear in the size of students.

b. The running time is quadratic in the size of students.

c. The running time is exponential in the size of students.

d. The running time is in O(N ) where N is the number of students.

e. The running time is in O(N2) where N is the number of students.

f. The running time is in O(2N) where N is the number of students.

g. The running time is in Θ(N ) where N is the number of students.

h. The running time is in Θ(N2) where N is the number of students.

i. The running time is in Θ(2N) where N is the number of students.

j. The running time is in Ω(N ) where N is the number of students.

k. The running time is in Ω(N2) where N is the number of students.

l. The running time is in Ω(2N) where N is the number of students.



cs1120: Blue Belt Exam 6

This repeats the code from the previous page (just so you don’t need to flip back-and-forth to read it):

def find_sparring_partners(students, better_sparring_matchup):
partners = []
unmatched = students
while len(unmatched) >= 2:

student = unmatched.pop()
best_match = 0
for partner in range(1, len(unmatched)):

if better_sparring_matchup(student, unmatched[partner],
unmatched[best_match]):

best_match = partner
partners.append([student[0], unmatched[best_match][0]])
unmatched.remove(unmatched[best_match])

return partners

6. The find_sparring_partners function produces a reasonable output (at least the first time it is called),
but has at least one serious flaw (hint: Master Kang keeps losing all her students every time they do
sparring!) Describe it, and suggest a simple way to fix it.



cs1120: Blue Belt Exam 7

Questions

7. What is a computer?

8. In what ways are the Colossus computer built to break the Lorenz cipher and one of the 200 com-
puter cores in a typical modern cellphone similar and different? (A good answer will include at least 2
similarities, and at least 2 differences.)

Similarities:

Differences:

9. (Optional, not required to pass Blue Belt) Once the whole class has passed the Blue Belt level, we
should:

a. Decide that its a bad idea to have no C’s or below in the class and change the grading standards.

b. Have pizza in class.

c. Have cupcakes in class.

d. Move the next Friday class to Jump Trampoline Park.

e. Other idea:

End of Exam. Feel free to use the back for any additional comments.

David Evans Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://xplorecs.org

http://xplorecs.org

	Entering the Dojang
	
	Board Breaking
	Sparring
	Questions

	
	
	
	
	
	
	


