
University of Virginia cs1120: Introduction to Computing 17 February 2016

Class 11 - Notes

Schedule

Project 3 is due on Friday, 26 February (moved back because of the snow day). Read the collaboration
policy carefully — you may work either alone or with a partner on Project 3 if you want, but see project
page for details.

If you don’t want to risk being scooped by an 8th-grader, you should definitiely read Chapter 6: Machines
of the course book before Friday’s class.

Computer Science Distinguished Alumni Speaker: Jason Mars, Let’s Get Sirius. Friday at 3:30pm in Rice
130 (followed by reception). For some background, see www.jasonmars.org (or embedded video on
on-line notes).

Higher-Order Functions

A higher-order function is a function that manipulates functions. A function can take functions as
inputs (you’ve seen this already in Project 1!), and can return functions as outputs. As you will see in
Project 3, being able to pass around and return functions like this is very powerful.

Making Pairs without Lists

def make_pair(a, b):
def selector(which):

if which:
return a

else:
return b

return selector

def pair_first(pair):
Finish this code:

def pair_last(pair):
Finish this code:

http://computingbook.org/Machines.pdf
http://www.jasonmars.org

cs1120: Class 11 - Notes 2

Programming with Lists and Functions

def list_increment(lst):
"""
Returns a new list that contains all the elements in the input list incremented by 1.
For example, list_increment([1, 2, 3]) should return [2, 3, 4].
"""

def list_double(lst):
"""
Returns a new list that contains all the elements in the input list doubled.
For example, list_increment([1, 2, 3]) should return [2, 4, 6].
"""

def increment(n): return n + 1

def list_map(fn, lst):
"""
Returns a new list that contains the result of applying fn to all the
elements in the input list.

For example, list_map(increment, [1, 2, 3]) should return [2, 3, 4].
"""

Show how to define list_double using list_map:

cs1120: Class 11 - Notes 3

Yellow Belts: List Procedure Practice

These problems are for “yellow belts” (not yet confident you can define recursive procedures that operate
on lists).

def list_sum(lst):
Returns the sum of the elements in lst.

def list_max(lst):
Returns the maximum (according to >) element in the lst.

Define a function, is_list(obj) that returns True if and only if the input object is a list.

def is_list(obj):

def list_flip(lst):
Returns a new list, where each element
is the negation of the elements in the input lst.

cs1120: Class 11 - Notes 4

Green Belts Only: Fun with List Comprehensions

These problems are for “green belts” (confident about list procedures and able to complete Project 2,
even if you haven’t been promoted yet). Please don’t get confused by this until you are very comfortable
writing recursive procedures on lists (and can solve the “Yellow Belt” problems).

Unlike other Python constructs that we will define precisely, for list comprehensions it is best to build an
intuition for what they do with experiments.

Here are some examples using list comprehensions.

Try to guess what they do, and then try evaluating them in your Python interpreter. Assume the variables
lst, lst1, and lst2 have been initialized to lists, e.g., lst = [1, 2, 3], but you should figure out what
these would do on any list inputs.

[m for m in lst]

[-m for m in lst]

[abs(m) for m in lst]

sum([1 for e in lst])

[m1 + m2 for m1, m2 in zip(lst1, lst2)] # figure out what zip does separately

[m1 == m2 for m1, m2 in zip(lst1, lst2)]

sum([not m1 == m2 for m1, m2 in zip(lst1, lst2)])

Comprehending List Comprehensions. Rewrite your implementations of sequence_complement,
count_matches, and hamming_distance as one-line list comprehensions.

Triple Gold Star Challenge. Write edit_distance using a list comprehension (and no loops or recursive
calls).

David Evans Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://xplorecs.org

http://xplorecs.org

	Schedule
	Higher-Order Functions
	Programming with Lists and Functions
	
	
	
	
	
	
	Yellow Belts: List Procedure Practice

	
	
	
	
	
	
	Green Belts Only: Fun with List Comprehensions

	
	
	

