University of Virginia

cs1120: Introduction to Computing

15 April 2016

Schedule

Class 32 - Interpreters

To be eligible for automatic Red Belt promotion, you need to complete Project 6 (including a good answer
to its bonus Problem 8) by Friday, 22 April, and have also completed Project 5 (including Problem 8).
Otherwise, you may qualify for the Red Belt exam by completing Problems 1-7 of both Project 5 and
Problem 6. If you do this by Friday, 22 April, you will be able to take the Red Belt exam starting Monday,
25 April (and have an opportunity to ensure at least an A- in the course before the end of the semester).

Interpreters

It is no exaggeration to regard this as the most fundamental idea in programming:

The evaluator, which determines the meaning of expressions in the programming
language, is just another program.

To appreciate this point is to change our images of ourselves as programmers. We come to see
ourselves as designers of languages, rather than only users of languages designed by others.
Abelson and Sussman, Structure and Interpretation of Computer Programs.

The evaluator takes as input an expression and an environment, and outputs the value of that expression
in the environment.

The Meta-Circular Evaluator

def meval(expr, env):

if i
elif
elif
elif
elif
elif

sPrimitive(expr):
isIf (expr):
isDefinition(expr):
isName (expr) :
isLambda(expr) :

isApplication(expr):

else:

Primitives

def eval
if i

else

Primitive (expr) :
sNumber (expr) :
return int(expr)

return expr

return evalPrimitive (expr)

return evalIf(expr, env)
evalDefinition(expr, env)

return evalName(expr, env)

return evallambda(expr, env)
return evalApplication(expr, env)
error ('Unknown expression type:

' + str(expr))

https://mitpress.mit.edu/sicp/full-text/sicp/book/node75.html

cs1120: Class 32 - Interpreters 2

Primitive Procedures

def primitivePlus (operands):
if (len(operands) == 0):
return O
else:
return operands[0] + primitivePlus (operands([1:])

Application
To apply a constructed procedure:

1. Construct a new environment, whose parent is the environment of the applied procedure.

2. For each procedure parameter, create a place in the frame of the new environment with the name
of the parameter. Evaluate each operand expression in the environment of the application and
initialize the value in each place to the value of the corresponding operand expression.

3. Evaluate the body of the procedure in the newly created environment. The resulting value is the
value of the application.

How should we represent an environment?

def evalApplication(expr, env):
subexprvals = [meval(sexpr, env) for sexpr in expr]
return mapply(

def mapply(proc, operands):
if (isPrimitiveProcedure(proc)):
return proc(operands)
elif isinstance(proc, Procedure):
params = proc.getParams()
newenv = Environment (proc.getEnvironment())
if len(params) != len(operands):
evalError ('Parameter length mismatch: ...')
for i in range(0, len(params)):
newenv.addVariable(params[i],)

return meval/(, newenv)

else:

David Evans Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://xplorecs.org

http://xplorecs.org

	Schedule
	Interpreters
	The Meta-Circular Evaluator

	Primitives
	Primitive Procedures
	Application
	
	

